Coding for the deep-space optical channel

Bruce Moision Jon Hamkins

331 Section Seminar

October 9, 2001

Dead-time constraint

• Q-switched lasers have been proposed for use on the deep-space optical channel as they can confine a high-energy pulse to a narrow slot time T_s . However, the pulses must be separated by a 'dead-time' T_d during which the laser recharges. Assuming On-Off-Keying, this translates into the constraint that 1's be separated by $d = (T_d/T_s)$ 0's.

...00001000000100001000010000000...

- Also typically impose maximum of k 0's, or non-pulsed slots, for timing recovery.
- Refer to this as a (d, k)-constraint, i.e. 1's must be separated by at least d and at most k 0's.

Constrained Code ____

$$C: \{0,1\}^p \to \{0,1\}^q$$

- What are the achievable rates, $R_{\mathcal{C}} = p/q$, of such a code?
- What are the tradeoffs? E.g. complexity/throughput/transmitted energy/performance?
- What is the performance in a larger coding scheme?

Outline _____

- 1. Some constrained codes, their rates, complexity of implementation, and performance.
- 2. How these codes perform in a serially-concatenated coding scheme, and how their performance compares with baseline.

Achievable Rates

Describe allowable sequences as paths on a labelled graph. Consider rates relative to (d, ∞) , and take k as a design parameter.

Capacity,

$$C(d) \stackrel{\text{def}}{=} \lim_{n \to \infty} \frac{1}{n} \log |\text{words of length } n \text{ in the } (d, \infty) \text{ system}|$$

upper bounds achievable rates. For large d, we have [Shannon, 48],[Khandekar, McEliece, 99].

$$C(d) \approx \frac{1}{T_s \ln(2)} \frac{W(d+1)}{d+1} \text{bits/s}$$

where W(z) is the *productlog* function which gives the solution for w in $z = we^w$.

Baseline: Pulse-Position-Modulation (PPM)

$$R_{\text{PPM}}(d, M) = \frac{1}{T_s} \frac{\log_2(M)}{M+d} \text{ bits/s}$$

Choosing M to maximize the rate,

$$R_{\text{PPM}}(d) = \frac{1}{T_s \ln(2)} \frac{W(d/e)}{d} \text{ bits/s}$$

One can show that $R_{\text{PPM}}(d)/C(d) \to_{d\to\infty} 1$, although significant throughput gains are possible for small to moderate d.

Truncated-Pulse-Position-Modulation (TPPM) __

TPPM has a maximum average rate

$$R_{\text{TPPM}}(d) = \frac{2}{T_s \ln(2)} \frac{W(\frac{2d+1}{e})}{2d+1} \text{ bits/s}$$

 $R_{\text{TPPM}}(d) > R_{\text{PPM}}(d)$, hence $R_{\text{TPPM}}(d)/C(d) \to_{d\to\infty} 1$. However, variable rate mapping leads to implementation problems.

Synchronous-Truncated-Pulse-Position-Modulation (STPPM)

Desire gains of variable-length mapping without implementation issues.

• Allow variable-length codewords, but constrain mapping to be synchronous, i.e.,

$$\mathcal{C}: \{0,1\}^{mp} \to \{0,1\}^{mq}, m = 1, 2, \dots$$

hence rate is fixed, p/q.

• Choosing $p/q \leq C(d)$, construct a set of prefix-free codewords that can be freely concatenated, with lengths a multiple of q, such that they satisfy the Kraft (In)Equality,

$$\sum_{c \in \mathcal{C}} 2^{|c|p/q} = 1$$

• Such a set can be used to construct a synchronous code.

STPPM, d = 16.

Mappings 3/21, 4/28, but implemented via fixed rate 1/7 trellis. Maximum-Likelihood decoder can use variable out-degree trellis with no modifications. Maximum-A-Posteriori decoder may also use the trellis, using, e.g. BCJR algorithm, with some modifications.

STPPM: Variable-out-degree implementation _____

		fixed-out-degree		STPPM States/Edges	
d	q	<u> </u>	$ States \le$	variable-outdegree	fixed-out-degree
16	7	4	16	4/14	10/20
32	10	8	64	8/51	36/72
64	17	12	160	6/41	35/70
128	28	20	448	7	51/102
	27	25	688	10/146	130/260
256	48	32	2448	8	112/224
	46	44	2940	12/301	270/520
512	81	73	8887	11/385	342/684

Nonpulsed-Position-Modulation (NPM)

Allow non-pulsed frames, i.e, $k = \infty$. Presented as a $(\lceil d/M \rceil, \infty)$ constraint over the M+1-ary alphabet $\{0,1,\ldots,M\}$, where each element is a PPM symbol (0 denotes an M-ary non-pulsed frame).

$$0 \bigcirc 0 \qquad 10^{\lceil d/M \rceil} \\ 20^{\lceil d/M \rceil} \\ \vdots \\ M0^{\lceil d/M \rceil}$$

For large d/M,

$$C(M,d) \approx \frac{1}{T_s \ln(2)} \frac{W(d+M)}{d+M} \text{bits/s}$$

For some pairs (M, d), there exist capacity-achieving, minimal complexity codes into the $(\lceil d/M \rceil, \infty)$ constraint [S. W. McLaughlin, 97]

Run-length distributions

A sequence in a (d, ∞) -constrained code may be uniquely parsed into phrases $0^{j}1$ where $j \geq d$. The distribution of these runlengths will affect timing-recovery.

Throughput, Complexity

Throughput for fixed T_d

$$C(T_d/T_s) \approx \frac{1}{\ln(2)} \frac{W(T_d/T_s)}{T_d} \text{bits/s}$$

Performance _

BCJR: edge-defined α 's ___

We use a novel(?) implementation of the BCJR, defining

$$\alpha_k(e) \stackrel{\text{def}}{=} P\{e_k = e, \text{ observation }\},$$

where e_k is the edge traversed at time instant k, as opposed to

$$\alpha_k(s) \stackrel{\text{def}}{=} P\{s_k = s, \text{ observation }\}, [BCJR, 74]$$

where s_k is the *state* traversed at time instant k.

For a fixed-out-degree code, the cost per iteration is approximately

$$3N|\mathcal{E}|$$
 multiplications, $3N|\mathcal{E}| - 2N|\mathcal{V}|$ additions,

where \mathcal{E} is the set of edges, \mathcal{V} is the set of states. State-based algorithms have approximate cost per iteration

$$4N|\mathcal{E}|$$
 multiplications, $3N|\mathcal{E}| - 2N|\mathcal{V}|$ additions.

Gain occurs only for events that are functions of edges.

Concatenating the constrained code ____

- Constrained code will be concatenated with an outer Error Correcting Code (ECC).
- Baseline is Reed Solomon concatenated with PPM $(RS(M-1,k) \leftarrow MPPM)$.
- Other orders of concatenation, e.g. those considered for magnetic or optical storage, are inappropriate here.

Prior Work

- PCCC←PPM [Hamkins, 99] on AWGN, Webb, Webb+Gaussian channel models.
- PCCC↔PPM [Peleg, Shamai, 00] Included PPM in iterations on discrete-time memoryless rayleigh fading channel.
 Illustrated performance 1–2 dB from capacity. PPM introduced to yield distribution close to capacity achieving.

Proposed system

• We illustrate that the system $CC(3, 1/2) \leftrightarrow PPM$, or $CC(3, 1/2) \leftrightarrow STPPM$, where CC(3, 1/2) is a 4-state convolutional code, provides substantial gains over $RS(M-1, k) \leftarrow PPM$, moderate gains over $PCCC \leftarrow PPM$, and small losses relative to $PCCC \leftrightarrow PPM$.

Density Evolution Analysis

Accumulate-PPM performance

Conclusions _____